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We study quantum phase coherence and weak localization in disordered metals with restricted backscattering
and phenomenologically formulate a large class of unconventional transport mechanisms as modified diffusion
processes not captured by the Boltzmann picture. Inspired by conductivity measurements in ferromagnetic
films and semiconductors where anomalous power-law corrections have been observed, we constrain memory-
dependent, self-avoidance effects onto the quantum-enhanced backscattered trajectories, drastically altering the
effect of weak localization in two dimensions �2D�. Scale-dependent corrections to the conductivity fail to
localize the electrons in d�2 for sufficiently weak disorder. Additionally, we analyze quantum transport in
reaction-diffusion systems governed by the Fisher’s equation and observe asymptotically similar delocalization
in 2D. Such unconventional transport might be relevant to certain non-Fermi liquid or strongly correlated
phases in 2D within the negative compressibility regime.
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I. INTRODUCTION

Lacking an adequate mathematical theory of the transition
point and no rigorous proof of the existence of extended
states in three dimensions �3D�, Anderson localization of
noninteracting electrons is an ongoing endeavor of
condensed-matter physics.1 Modern approaches exploit sym-
metry classes of a given disordered Hamiltonian, construct-
ing perturbative conductance g scaling forms of the diffusion
�Goldstone� modes. Ten such universality classes have been
identified with certain cases demonstrating an absence of lo-
calization in lower dimensions such as the symplectic class,
which describes systems with extrinsic spin-orbit
interactions.2,3 Weak localization �WL�, is a powerful com-
plimentary approach, which in contrast to Anderson or strong
localization, are its precursor effects arising from phase co-
herent backscattering4 in the metallic regime.

Following its early development, there has been much
progress in understanding how the quantum phase coherence
is affected by fundamental processes such as extrinsic and
intrinsic spin-orbit interactions, spin-flip scattering, electron-
phonon interactions, magnetic fields, Nyquist noise, etc.4

These earlier cases demonstrated a renormalization of the
diffusion constant, which can be realized in important phe-
nomena such as anomalous magnetoconductance, antilocal-
ization, and spin-selective localization.2,5,6 However the ex-
isting theoretical studies have not successfully addressed the
consequences of nonequilibrium conditions, strong interac-
tion ground states or non-Markovian processes. Therefore it
is our purpose here to initiate an exploration of transport
paradigms beyond the ordinary case of simple diffusion, by
including certain observed features of strongly correlated
ground states such as possible nonequilibrium conditions and
non-Markovian affects.

Interactions have been included in disordered electron
systems both from a direct perturbative framework
�Hartree-Fock+impurity vertex corrections�,7 a nonlinear
sigma model approach8–10 and from an alternative scaling
analysis.11 More recently, the experimental discovery of a
two-dimensional metal-insulator transition �2DMIT� in high-

mobility Si-metal-oxide-semiconductor field-effect transistor
�MOSFET� heterostructures has received much attention
lately.12 Following its discovery, a two-parameter scaling �
function which takes the limit of a large valley degeneracy
nv→� in a 1 /nv expansion has yielded important and favor-
able results in understanding transport in dirty Fermi-liquid
metals.13,14

Experimental evidence suggests that the transition point
of the 2DMIT takes place within a negative compressibility
regime near rs�10 for a wide variety of electron- and hole-
carrier systems.15 It should be noted that the neutralizing
background renders the total compressibility positive, how-
ever, this contribution is subtracted off and the density-
density correlation function in the limit q→0 for the electron
gas itself is negative. In addition, it is well known that
strong-correlation effects may lead to negative compressibil-
ity ground states, although the proper fixed point of the cor-
related fluid in 2D has not been established. Schakel16 has
shown that such conditions may lead to analogs of charge-
density wave formation and droplet clustering consistent
with local-density inhomogeneities or imbalance. Therefore
with these experimental and phenomenological conditions in
mind, and as an alternative approach we formulate the prob-
lem as a reaction-diffusion diffusion process, predicting the
destruction of phase coherence and a possible description of
non-Fermi-liquid ground states in the negative compressibil-
ity regime, not captured by the ordinary Boltzmann picture.

Another interesting case of unconventional transport in-
volves non-Markovian effects, which is a manifestation of
correlated disorder. Earlier studies have detected memory-
dependent effects by applying an external magnetic field to a
2D electron gas �2DEG� with observable consequences in the
transport.17–19 As another application of the semiclassical
formalism we include infinite repulsion of the time-reversed
interference trajectories which can be incorporated into the
WL corrections through the scale dependence of the effective
scattering length R�t�. In simple terms the scattered electrons
will remember their past and avoid taking trajectories al-
ready traversed, known as the extreme limit of repulsion
within the random walk called self-avoidance.
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II. SEMICLASSICAL WEAK LOCALIZATION

WL can be understood semiclassically in terms of the dif-
fusive behavior of a particle in a d-dimensional disordered
system. Typically, when the disorder is weak, the mean free
path l is much greater than the quantum-mechanical wave-
length �F�kF

−1, kFl�1 such that the conductivity is modified
by

� = �0 + ��, ���� 	 �0 �1�

with the usual Drude conductivity given by �0=e2
� /me for
charge e, carrier density 
, scattering time �, and mass me. It
is generally appreciated that WL is a quantum-interference
contribution to �� that results from phase-coherent back-
scattering. Qualitatively, the quantum interference correc-
tions can be understood from within a Feynman path-integral
description.4,20 The Feynman paths �indices i , j� connecting
two locations within the disordered metal can be described
by probability amplitudes Ai. The total probability to reach
the two points W must sum all possible weighted trajectories,
including a cross-interference term W= ��iAi�2=�i�Ai�2
+�i�jAiAj

�. A backscattered trajectory that interferes with its
time-reversed path is quantum mechanically enhanced and
facilitates localization.4

As a practical matter, in order to calculate �� we consider
some variant of a diffusive transport along a closed trajec-
tory, fixing the particle’s classical return probability
CD�r� , t�,20

�CD

�t
= D�2CD + ��CD,r�,t� , �2�

where ��CD ,r� , t� is a function that depends on the specific
Hamiltonian considered. Note that CD is expected to be a
normalized probability distribution such that nonsingular av-
erages of length �x� , �x2� can be computed. Therefore there
should be present a proper competition of terms �growth and
dissipation� in ��CD ,r� , t�. Furthermore, in systems with den-
sity inhomogeneities and subsequently nontrivial ��CD ,r� , t�,
it is not essential for maintaining a consistently normalized
Cooperon that the flow of matter in and out of a local space
be equal.

Upon determining CD�r� , t� the �� correction is extracted
from classical considerations of a compact volume Rd �over
the backscattered region�, spreading as a function of time.
R�t� is a central quantity in the study of random walks, which
can accurately describe the discrete scattering events of the
metallic regime. In the continuum limit, the random walk
becomes a diffusive process controlled by CD�r� , t�. There-
fore, R�t� is determined from CD�r� , t� by the relation

R�t� = �	 ddr�CD�r�,t�r2
1/2

�3�

which is essentially the root-mean-squared value of the po-
sition taken by the electron. To determine the full contribu-
tion to ��, R�t� must be integrated in the following manner:

�� = −
2e2

�
D	

�

��

dtR�t�−d, �4�

where the probability of return can be expected to be damped
R�t�−d→R�t�−de−�t/���. We therefore include 1 /�� as the
dephasing rate that regularizes the integration. The interest-
ing case is given by ����. Note that the integral in Eq. �4� is
precisely the result of the maximally crossed diagrams or
Cooperon-type terms generated in the formal Green’s func-
tion treatment. For the ordinary case of noninteracting elec-
trons in zero external fields, ����ie for a given inelastic
scattering time �ie and ��CD ,r� , t�=0, yielding CD�r� , t�
=e−�r − r0�2/4Dt / �4Dt�d/2 leading to R�t�=�2Dt and the con-
ventional WL result

��

�0
� − ��ie/��1/2 d = 1

− � ln��ie/�� d = 2

− �2��ie/��1/2 d = 3.
� �5�

After restoring the scale dependence of the �’s by R�t� we
have

��L� = �0 −
e2

�d
�R��ie� − R���� d = 1

ln�R��ie�/R���� d = 2

� 1

R��ie�
−

1

R���
 d = 3.� �6�

Evidently for R��ie��R���, ��L� negatively diverges in d
=1,2, indicating that the backscattering contribution no
longer has a perturbative effect on the � and such states are
strongly localized. If one performs an expansion of the scal-
ing function ��g�=d ln g /d ln R��ie� near �=d−2 for �	1,
what follows is ��g�=d−2−1 /g+¯ or the celebrated scal-
ing theory of localization.21

In general, �ie is a functional of R�t� and depends on the
power spectrum of the environmental fluctuations. Experi-
mentally, the result above can be detected in the limit of low
temperatures T→0, given that �ie is expected to vanish as a
power law in T, or �ie�Tp. Consequently, in a Fermi liquid a
careful determination of p is especially required in d=2
where the obvious logarithmic correction must be distin-
guished from the additional logarithmic correction in T gen-
erated by the exchange diagrams of the disordered-
interacting problem.7 This can be accomplished by applying
a small normal magnetic field to suppress WL effects.6 Nev-
ertheless, we have provided a self-contained description of
the necessary mathematical formalism, indispensable for the
rest of the paper.

III. INTERACTIONS AND REACTION DIFFUSION

As we have shown ordinary diffusion with R�t�� t1/2 pro-
duces the WL corrections in Eq. �5�. We strongly emphasize
that an alternative way of modeling a different ground state
can be accomplished by including a nontrivial ��CD ,r� , t� in
Eq. �2� with possible nonlinear and nonequilibrium terms.
The generalized Fisher’s equation which contains
��CD ,r� , t��CD�1−CD� is the simplest case of reaction-
diffusion model, introducing local-energy penalties or self-
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interaction for CD coupled with competing growth terms,
often useful in modeling problems related to quantitative bi-
ology and physical chemistry in addition to nonequilibrium
electronic systems.22 In order to get an accurate sense of the
scale-dependent �� and metal-insulator criticality, one needs
to determine specific forms of R�t� in arbitrary dimensions,
which can be difficult and is itself an active area of research.

An approximate asymptotic solution of the Fisher’s equa-
tion in arbitrary dimensions for a wide range of boundary
conditions was performed by Puri et al.,23 who determined
the following expression for the spreading of the domain:

RF�d,t� � 2t�1 −
d ln�4t�

2t
�1/2

�7�

for a fixed value of cF=2, which is the velocity of the trav-
eling wave solution of CD. RF�d , t� takes on real values be-
yond the branch point of the square root at t0=−�d /2�WL�
−1 / �2d��, where WL is the Lambert-W function. At very
small values of t, R�t� is dominated by the logarithm, how-
ever, at t� t0, which is the limit of interest, R�t�� t, and the
�� via Eq. �4� becomes

��F

�0
� − ln�R����� d = 1

− 2��R�����−1 d = 2

− 3�2�R�����−2 d = 3
� �8�

which is clearly nonsingular for large �� and contains non-
localized states in d=2 for the weak-disorder limit. This re-
sult is rather unexpected, given that we did not introduce any
additional scaling couplings, rather a simple unweighted
quadratic term in ��CD ,r� , t���CD�2 is sufficient to circum-
vent localization.

IV. INTERACTIONS, FLORY SCALING AND NON-
MARKOVIAN TRANSPORT

Another unconventional ground state having memory-
dependent effects with generalized solutions of R�t� in arbi-
trary dimensions can be constructed by enforcing self-
avoidance onto the random scattering trajectories. Self-
avoidance will nontrivially introduce long-range correlations
into the impurity-scattered trajectories of the electrons in
contrast to directly considering correlations in the random
potential itself. Although there might be a relationship be-
tween the two types of correlated randomness, here we are
motivated to include repulsion between the trajectories in
order to induce the site or path of a scattered electron to have
a dependence on its previous scattering history.24 Physically,
a local repulsive term can be introduced into a random walk
such that the walk never crosses itself and is free of inter-
secting loops as shown in Fig. 1�a�. Such a model was pio-
neered by the Nobel prize winning chemist Paul Flory, who
developed the famous scaling relation of a random walk with
self-avoidance25

Rs.a.�d,t� � �Dt�3/�2+d� = �Dt� d = 1

�Dt�3/4 d = 2

�Dt�3/5 d = 3,
� �9�

where the exponent associated with the spreading of the elec-
tron density will have an explicit dependence on the dimen-
sions of the system. If we introduce Eq. �9� into Eq. �4� we
have

��s.a.

�
� − ln���/�� d = 1

− ����/��−1/2 d = 2

− �2���/��−4/5 d = 3
� �10�

which is plotted in Fig. 2 and after restoring the scattering
length dependence for each value of d, our final result for the
scale-dependent � is given by

(a) (b)

𝑅(𝑡) ∼ 𝑡3/(2+𝑑)
𝑅(𝑡) ∼ 𝑡1/2

FIG. 1. Typical backscattered trajectories and the expected time-
dependent behavior of their end-to-end distances R�t�. �a� In a sys-
tem containing self-avoidance none of the paths taken by the elec-
trons may be taken twice, causing the effective scattering length to
be dependent on the dimensionality. �b� Ordinary diffusion, where
each scattering event is statistically independent of previous ones,
allowing for the crossing or retracing of steps.

FIG. 2. �Color online� Conductivity corrections in a non-
Markovian transport process arising from self-avoidant diffusive
scattering. Notice that the logarithmic behavior in d=1 is a clear
indication of the lower critical dimension of delocalization for
which the perturbative � function in a 2+� expansion fails to ac-
curately capture the transition.
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��s.a.

�
� 

ln�R�1,���/R�1,��� d = 1

2�R−2/3�2,��� − R−2/3�2,��� d = 2

5

4
�R−4/3�3,��� − R−4/3�3,��� d = 3� �11�

showing exclusive localization only in d=1, and the possi-
bility for a mobility edge in 2D now emerges near the band
center. Although a 2DMIT is expected at some critical value
of the ratio of random potential width over the hopping
strength, it is necessary for accurate numerical simulations
using the finite-size scaling method to confirm these aspects
of the transition and determine the critical exponents.

V. DISCUSSION AND CONCLUDING REMARKS

For both cases studied here, we have observed a failure of
localization in d=2 simply by restricting the backscattering
by means of a modified diffusion process and determining its
perturbative effect on the transport. These two new types
interactions in disordered electron systems may reflect an
alternative ground state to the conventional Fermi liquid.
First we have calculated the transport corrections in a Fish-
er’s reaction-diffusion model, where the interactions are
present as nonlinearities in the diffusion �or self-interaction
of the probability density� rather than directly taken as a
density-density �or four fermion� interaction in the original
Hamiltonian.

Thus we have chosen as an alternative to a many-body
picture, a one-particle system with modified kinetics, which
reflects a possibly different fixed point of the electron liquid.
Furthermore, in the Fisher’s equation there is a local repul-
sion of the probability density in addition to nonequilibrium
growth which may be an emergent manifestation of the
strongly correlated electron liquid, as both theoretical and
experimental evidence suggest that there may be density in-
homogeneities, negative compressibility states15,16 near the
2DMIT and the predicted nematic phases that are intermedi-
ate between the Fermi liquid and the Wigner crystal.26

Hence, experimentally, by tuning the density of a 2DEG in a
disordered Si-MOSFET heterostructure in the vicinity of rs
�10 near the 2DMIT critical point we expect the negative
compressibility conditions modeled by the phenomenologi-
cal considerations of a reaction-diffusion transport model to
hold accurately.

Regarding non-Markovian transport, recent ��T� mea-
surements in disorder tuned magnetic films have detected
regimes with pure power-law like corrections to ��T�.27 Ad-
ditionally ferromagnetic semiconducting systems are known
to contain non-Markovian transport and spin-relaxation
mechanisms for which anomalous temperature-dependent
corrections have been experimentally observed in
d=1,2.28,29 Hence, materials such as ferromagnetic �Ga,M-
n�As are likely candidates for observing the effects presented
here.

In conclusion, we have identified several unconventional
modes of diffusive transport that can circumvent localization
and it is shown here that nonequilibrium conditions can de-
stroy the localization corrections in 2D. We attempted to de-
velop a discussion of the single-parameter scaling of ��g�
which should depend on the special symmetries of the
Hamiltonian. Hence, as a compliment to our semiclassical
scaling theory it is essential that several possible microscopic
Hamiltonians and stable fixed points that reflect the environ-
mental conditions for these forms of restricted backscattering
can be properly reconstructed and those relevant symmetries
are identified in addition to careful numerical simulations
which are beyond the valid perturbative regime of our analy-
sis.
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